Gabor filter
This example shows how one can apply spatial space kernesl Gabor
using fourier transformation and convolution theorem to extract image features. A similar example is Log Gabor filter.
using ImageCore, ImageShow, ImageFiltering # or you could just `using Images`
using FFTW
using TestImages
Definition
Mathematically, Gabor kernel is defined in spatial space:
\[g(x, y) = \exp(-\frac{x'^2 + \gamma^2y'^2}{2\sigma^2})\exp(i(2\pi\frac{x'}{\lambda} + \psi))\]
where $i$ is imaginary unit Complex(0, 1)
, and
\[x' = x\cos\theta + x\sin\theta \\ y' = -x\sin\theta + y\cos\theta\]
First of all, Gabor kernel is a complex-valued matrix:
kern = Kernel.Gabor((10, 10), 2, 0.1)
10×10 ImageFiltering.Kernel.GaborKernels.Gabor{ComplexF64, Float64, UnitRange{Int64}} with indices -4:5×-4:5:
0.000236219+0.000911886im … -1.26822e-6-3.04427e-6im
0.000815436+0.00128033im -5.87633e-6-6.85938e-6im
0.00153883+0.00127018im -1.72161e-5-1.05268e-5im
0.00198974+0.00078647im -3.57637e-5-8.56878e-6im
0.00186772+0.000117409im -5.45036e-5+4.28594e-6im
0.00129346-0.000331454im … -6.12675e-5+2.53356e-5im
0.000656579-0.000415763im -4.9918e-5+4.25381e-5im
0.000235619-0.000283936im -2.77254e-5+4.50781e-5im
5.28742e-5-0.000132753im -8.2052e-6+3.3855e-5im
2.95009e-6-4.50467e-5im 1.41751e-6+1.86506e-5im
The Gabor
type is a lazy array, which means when you build the Gabor kernel, you actually don't need to allocate any memories.
using BenchmarkTools
kern = @btime Kernel.Gabor((64, 64), 5, 0); # 36.481 ns (0 allocations: 0 bytes)
@btime collect($kern); # 75.278 μs (2 allocations: 64.05 KiB)
To explain the parameters of Gabor filter, let's introduce some small helpers function to display complex-valued kernels.
show_phase(kern) = @. Gray(log(abs(imag(kern)) + 1))
show_mag(kern) = @. Gray(log(abs(real(kern)) + 1))
show_abs(kern) = @. Gray(log(abs(kern) + 1))
Keywords
wavelength
(λ)
λ specifies the wavelength of the sinusoidal factor.
bandwidth, orientation, phase_offset, aspect_ratio = 1, 0, 0, 0.5
f(wavelength) = show_abs(Kernel.Gabor((100, 100); wavelength, bandwidth, orientation, aspect_ratio, phase_offset))
mosaic(f.((5, 10, 15)), nrow=1)
orientation
(θ)
θ specifies the orientation of the normal to the parallel stripes of a Gabor function.
wavelength, bandwidth, phase_offset, aspect_ratio = 10, 1, 0, 0.5
f(orientation) = show_abs(Kernel.Gabor((100, 100); wavelength, bandwidth, orientation, aspect_ratio, phase_offset))
mosaic(f.((0, π/4, π/2)), nrow=1)
phase_offset
(ψ)
wavelength, bandwidth, orientation, aspect_ratio = 10, 1, 0, 0.5
f(phase_offset) = show_phase(Kernel.Gabor((100, 100); wavelength, bandwidth, orientation, aspect_ratio, phase_offset))
mosaic(f.((-π/2, 0, π/2, π)), nrow=1)
aspect_ratio
(γ)
γ specifies the ellipticity of the support of the Gabor function.
wavelength, bandwidth, orientation, phase_offset = 10, 1, 0, 0
f(aspect_ratio) = show_abs(Kernel.Gabor((100, 100); wavelength, bandwidth, orientation, aspect_ratio, phase_offset))
mosaic(f.((0.5, 1, 2)), nrow=1)
bandwidth
(b)
The half-response spatial frequency bandwidth (b) of a Gabor filter is related to the ratio σ / λ, where σ and λ are the standard deviation of the Gaussian factor of the Gabor function and the preferred wavelength, respectively, as follows:
\[b = \log_2\frac{\frac{\sigma}{\lambda}\pi + \sqrt{\frac{\ln 2}{2}}}{\frac{\sigma}{\lambda}\pi - \sqrt{\frac{\ln 2}{2}}}\]
wavelength, orientation, phase_offset, aspect_ratio = 10, 0, 0, 0.5
f(bandwidth) = show_abs(Kernel.Gabor((100, 100); wavelength, bandwidth, orientation, aspect_ratio, phase_offset))
mosaic(f.((0.5, 1, 2)), nrow=1)
Examples
There are two options to apply a spatial space kernel: 1) via imfilter
, and 2) via the convolution theorem.
imfilter
imfilter
does not require the kernel size to be the same as the image size. Usually kernel size is at least 5 times larger than the wavelength.
img = TestImages.shepp_logan(127)
kern = Kernel.Gabor((19, 19), 3, 0)
out = imfilter(img, real.(kern))
mosaic(img, show_abs(kern), show_mag(out); nrow=1)
convolution theorem
The convolution theorem tells us that fft(conv(X, K))
is equivalent to fft(X) .* fft(K)
. Because Gabor kernel is defined with regard to its center point (0, 0), we need to do ifftshift
first so that the frequency centers of both fft(X)
and fft(kern)
align well.
kern = Kernel.Gabor(size(img), 3, 0)
out = ifft(fft(channelview(img)) .* ifftshift(fft(kern)))
mosaic(img, show_abs(kern), show_mag(out); nrow=1)
As you may have notice, using convolution theorem generates different results. This is simply because the kernel size are different. If we create a smaller kernel, we then need to apply freqkernel
first so that we can do element-wise multiplication.
# freqkernel = zero padding + fftshift + fft
kern = Kernel.Gabor((19, 19), 3, 0)
kern_freq = freqkernel(real.(kern), size(img))
out = ifft(fft(channelview(img)) .* kern_freq)
mosaic(img, show_abs(kern), show_mag(out); nrow=1)
When the kernel size is small, imfilter
works more efficient than fft-based convolution. This benchmark isn't backed by CI so the result might be outdated, but you get the idea.
using BenchmarkTools
img = TestImages.shepp_logan(127);
kern = Kernel.Gabor((19, 19), 3, 0);
fft_conv(img, kern) = ifft(fft(channelview(img)) .* freqkernel(real.(kern), size(img)))
@btime imfilter($img, real.($kern)); # 236.813 μs (118 allocations: 418.91 KiB)
@btime fft_conv($img, $kern) # 1.777 ms (127 allocations: 1.61 MiB)
kern = Kernel.Gabor(size(img), 3, 0)
fft_conv(img, kern) = ifft(fft(channelview(img)) .* ifftshift(fft(kern)))
@btime imfilter($img, real.($kern)); # 5.318 ms (163 allocations: 5.28 MiB)
@btime fft_conv($img, $kern); # 2.218 ms (120 allocations: 1.73 MiB)
# Filter bank
A filter bank is just a list of filter kernels, applying the filter bank generates multiple outputs:
filters = [Kernel.Gabor(size(img), 3, θ) for θ in -π/2:π/4:π/2];
X_freq = fft(channelview(img))
out = map(filters) do kern
ifft(X_freq .* ifftshift(fft(kern)))
end
mosaic(
map(show_abs, filters)...,
map(show_abs, out)...;
nrow=2, rowmajor=true
)
References
- [1] Wikipedia: Gabor filter
- [2] Wikipedia: Gabor transformation
- [3] Wikipedia: Gabor atom
- [4] Gabor filter for image processing and computer vision
This page was generated using DemoCards.jl and Literate.jl.