Contour Detection and Drawing

Source code notebook Author Update time

This demonstration shows how to detect contours on binary images The algorithm used is "Topological Structural Analysis of Digitized Binary Images by Border Following" by Suzuki and Abe (Same as OpenCV).#

Points are represented using CartesianIndex. Contours are represented as a vector of Points. Direction is a single number between 1 to 8. Steps inside functions are marked as they are in the original paper

using Images, TestImages, FileIO

#              N          NE      E       SE      S       SW        W      NW
# direction between two pixels

# rotate direction clocwise
function clockwise(dir)
    return (dir)%8 + 1
end

# rotate direction counterclocwise
function counterclockwise(dir)
    return (dir+6)%8 + 1
end

# move from current pixel to next in given direction
function move(pixel, image, dir, dir_delta)
    newp = pixel + dir_delta[dir]
    height, width = size(image)
    if (0 < newp[1] <= height) &&  (0 < newp[2] <= width)
        if image[newp]!=0
            return newp
        end
    end
    return CartesianIndex(0, 0)
end

# finds direction between two given pixels
function from_to(from, to, dir_delta)
    delta = to-from
    return findall(x->x == delta, dir_delta)[1]
end



function detect_move(image, p0, p2, nbd, border, done, dir_delta)
    dir = from_to(p0, p2, dir_delta)
    moved = clockwise(dir)
    p1 = CartesianIndex(0, 0)
    while moved != dir ## 3.1
        newp = move(p0, image, moved, dir_delta)
        if newp[1]!=0
            p1 = newp
            break
        end
        moved = clockwise(moved)
    end

    if p1 == CartesianIndex(0, 0)
        return
    end

    p2 = p1 ## 3.2
    p3 = p0 ## 3.2
    done .= false
    while true
        dir = from_to(p3, p2, dir_delta)
        moved = counterclockwise(dir)
        p4 = CartesianIndex(0, 0)
        done .= false
        while true ## 3.3
            p4 = move(p3, image, moved, dir_delta)
            if p4[1] != 0
                break
            end
            done[moved] = true
            moved = counterclockwise(moved)
        end
        push!(border, p3) ## 3.4
        if p3[1] == size(image, 1) || done[3]
            image[p3] = -nbd
        elseif image[p3] == 1
            image[p3] = nbd
        end

        if (p4 == p0 && p3 == p1) ## 3.5
            break
        end
        p2 = p3
        p3 = p4
    end
end


function find_contours(image)
    nbd = 1
    lnbd = 1
    image = Float64.(image)
    contour_list =  Vector{typeof(CartesianIndex[])}()
    done = [false, false, false, false, false, false, false, false]

    # Clockwise Moore neighborhood.
    dir_delta = [CartesianIndex(-1, 0) , CartesianIndex(-1, 1), CartesianIndex(0, 1), CartesianIndex(1, 1), CartesianIndex(1, 0), CartesianIndex(1, -1), CartesianIndex(0, -1), CartesianIndex(-1,-1)]

    height, width = size(image)

    for i=1:height
        lnbd = 1
        for j=1:width
            fji = image[i, j]
            is_outer = (image[i, j] == 1 && (j == 1 || image[i, j-1] == 0)) ## 1 (a)
            is_hole = (image[i, j] >= 1 && (j == width || image[i, j+1] == 0))

            if is_outer || is_hole
                # 2
                border = CartesianIndex[]

                from = CartesianIndex(i, j)

                if is_outer
                    nbd += 1
                    from -= CartesianIndex(0, 1)

                else
                    nbd += 1
                    if fji > 1
                        lnbd = fji
                    end
                    from += CartesianIndex(0, 1)
                end

                p0 = CartesianIndex(i,j)
                detect_move(image, p0, from, nbd, border, done, dir_delta) ## 3
                if isempty(border) ##TODO
                    push!(border, p0)
                    image[p0] = -nbd
                end
                push!(contour_list, border)
            end
            if fji != 0 && fji != 1
                lnbd = abs(fji)
            end

        end
    end

    return contour_list


end

# a contour is a vector of 2 int arrays
function draw_contour(image, color, contour)
    for ind in contour
        image[ind] = color
    end
end
function draw_contours(image, color, contours)
    for cnt in contours
        draw_contour(image, color, cnt)
    end
end

# load images
img1 = testimage("mandrill")
img2 = testimage("lighthouse")

# convert to grayscale
imgg1 = Gray.(img1)
imgg2 = Gray.(img2)

# threshold
imgg1 = imgg1 .> 0.45
imgg2 = imgg2 .> 0.45

# calling find_contours
cnts1 = find_contours(imgg1)
cnts2 = find_contours(imgg2)

img3 = copy(img1)
img4 = copy(img2)

# finally, draw the detected contours
draw_contours(img3, RGB(1,0,0), cnts1)
draw_contours(img4, RGB(1,0,0), cnts2)


vcat([img1 img2], [img3 img4])

This page was generated using DemoCards.jl and Literate.jl.